Bài 1: Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng MNPQ là hình bình hành. Tứ giác ABCD cần điều kiện gì thì MNPQ là hình chữ nhật.
Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?
Bài tập 1: Cho tam giác ABC. Từ điểm O trong tam giác đó kẻ đường thẳng song song với BC cắt cạnh AB ở M , cắt cạnh AC ở N. a)Tứ giác BMNC là hình gì? Vì sao? b)Tìm điều kiện của ABC để tứ giác BMNC là hình thang cân? c) Tìm điều kiện của ABC để tứ giác BMNC là hình thang vuông?
- PHƯƠNG PHÁP 1: Phương pháp đưa về dạng tổng Phương pháp: Phương pháp này thường sử dụng với các phương trình có các biểu thức chứa ẩn viết được dưới dạng tổng các bình phương. - Biến đổi phương trình về dạng một vế là một tổng của các bình phương các biểu thức chứa ẩn; vế còn lại là tổng bình phương của các số nguyên (số số hạng của hai vế bằng nhau).
I. Phương pháp:* Cách 1: Để giải các Pt bậc cao, ta biến đổi, rút gọn để dưa Pt về dạng Pt có vế trái là một đa thức bậc cao, vế phải bằng 0, vận dụng các phương pháp phân tích đa thức thành nhân tử để đưa Pt về dạng pt tích để giải* Cách 2: Đặt ẩn phụ